Clustering of Naturalistic Driving Encounters Using Unsupervised Learning
نویسندگان
چکیده
Deep understanding of driving encounters could help self-driving cars make appropriate decisions when driving in complex settings with surrounding vehicles engaged. This paper develops an unsupervised classifier to group naturalistic driving encounters into several distinguishable clusters by combining an auto-encoder with a k-means clustering (AE-kMC). In order to show the effectiveness of our developed classifier, the data of 10000 naturalistic driving encounters collected by the University of Michigan, Ann Arbor in the past five years were tested using the two proposed methods above. We compare our developed method with the k-means clustering methods. The comparison experiment results demonstrate that our developed AE-kMC outperforms the k-means clustering method.
منابع مشابه
High-Dimensional Unsupervised Active Learning Method
In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the da...
متن کاملExtracting V2V Encountering Scenarios from Naturalistic Driving Database
It is necessary to thoroughly evaluate the effectiveness and safety of Connected Vehicles (CVs) algorithm before their release and deployment. Current evaluation approach mainly relies on simulation platform with the single-vehicle driving model. The main drawback of it is the lack of network realism. To overcome this problem, we extract naturalistic V2V encounters data from the database, and t...
متن کاملINTEGRATED ADAPTIVE FUZZY CLUSTERING (IAFC) NEURAL NETWORKS USING FUZZY LEARNING RULES
The proposed IAFC neural networks have both stability and plasticity because theyuse a control structure similar to that of the ART-1(Adaptive Resonance Theory) neural network.The unsupervised IAFC neural network is the unsupervised neural network which uses the fuzzyleaky learning rule. This fuzzy leaky learning rule controls the updating amounts by fuzzymembership values. The supervised IAFC ...
متن کاملAn Unsupervised Learning Method for an Attacker Agent in Robot Soccer Competitions Based on the Kohonen Neural Network
RoboCup competition as a great test-bed, has turned to a worldwide popular domains in recent years. The main object of such competitions is to deal with complex behavior of systems whichconsist of multiple autonomous agents. The rich experience of human soccer player can be used as a valuable reference for a robot soccer player. However, because of the differences between real and simulated soc...
متن کاملMarket Segmentation of Inbound Business Tourists to Thailand by Binding of Unsupervised and Supervised Learning Techniques
Market segmentation is an important tool, for driving an organization to achieve its goals. This study proposes a market segmentation technique with the binding of unsupervised and supervised learning techniques. The method aims to cluster international tourists who arrived in Thailand for business proposes, and to classify business tourists by using the products of an unsupervised learning tec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1802.10214 شماره
صفحات -
تاریخ انتشار 2018